Noi găsim punctele de intersecție cu axele de coordonate cu axa Oy, cu axa ox rola

3. Deoarece toate punctele sunt în sfera de aplicare a valorilor, pauza puncte NO.

4. asimptota verticală la graficul funcției nu se datorează faptului că Nu există puncte de pauză. Dreptul și asimptota oblică stanga are ecuația: în cazul în care:

deoarece asymptotes înclinate dreapta și stânga coincid, atunci ecuația este de forma, adică - ecuația asimptotă orizontală.

5. Găsiți punctele extremum ale funcției date. Pentru aceasta vom găsi primul derivat:

pentru că Dacă funcția are un punct extrem, atunci la acest punct prima derivată a funcției este egală cu zero, adică, :

, fracțiune este egal cu zero, în cazul în care numărătorul este zero, adică Prin urmare, prin urmare, aceasta înseamnă punctul - punctul funcției extremelor.

La derivatul stație> 0, apoi la specificat creșteri ale funcției.

La derivatul stație <0, значит, при , заданная функция убывает (рис 2.).

În consecință - punctul maxim al unei funcții predeterminate.

6. Găsiți porțiunile de convexitate / concavitatea funcției specificate. Pentru aceasta vom găsi derivata a doua:

pentru că Dacă funcția are un punct de inflexiune, atunci la acest punct al doilea derivat este egal cu zero, adică :

, fracțiune este egal cu zero, în cazul în care numărătorul este zero, adică Prin urmare, atunci, de aici

Pe derivatul plot> 0, atunci această secțiune a concavitatea graficului funcției.

La derivatul stație> 0,

prin urmare, este complot, de asemenea, graficul concavitate.

În consecință, pentru o funcție anumită diagramă este concav.

La derivatul stație <0, значит, при график заданной функции является выпуклым (рис. 3).

Prin urmare, punctul de - punctul de inflexiune a graficului unei funcții date.

Investigațiile ale funcției dat permite construirea graficului (vezi. Fig. 4).

Sarcina №8. Întrebarea №8.

Compania produce două tipuri de mărfuri în cantități și. Având în vedere funcția de costurile totale. Prețurile acestor bunuri pe piață și sunt egale. Se determină profitul maxim, pentru a găsi că profitul realizat în orice ieșire.

Să - funcția de profit, atunci

Noi găsim primele derivatele parțiale ale funcției: